Die Ankunft der vielen Erdbebenwellen an der Seismometerstation, den sogenannten Phaseneinsatz, genau zu bestimmen, ist wichtig für das präzise Lokalisieren der Erdbebenereignisse, etwa um Nachbeben vorherzusagen, die manchmal schwerere Schäden verursachen können als das erste Beben.
Durch genaue Lokalisation von Erdbebenzentren lassen sich auch physikalische Prozesse in der Tiefe besser unterscheiden, was wiederum Rückschlüsse auf den Aufbau des Erdinnern erlaubt. "Unsere Ergebnisse zeigen, dass künstliche Intelligenz die Erdbebenanalyse wesentlich verbessern kann – nicht nur bei großen Datenmengen, sondern auch bei begrenzter Datenlage", erklärt Professor Andreas Rietbrock vom Geophysikalischen Institut (GPI) des KIT.
Durch Auswertung der Seismogramme, dem sogenannten Picken, lassen sich die Einsatzzeiten der einzelnen Phasen ermitteln. Dies geschieht traditionell von Hand. Doch beim manuellen Picken kann die Subjektivität des jeweiligen Seismologen die Genauigkeit beeinträchtigen. Vor allem aber erfordert die manuelle Auswertung mittlerweile einen nicht mehr zu vertretenden Zeit- und Personalaufwand, weil die Menge der verfügbaren seismischen Daten immer größer wird und die Seismometer-Netzwerke immer dichter werden. Um alle Informationen schnell zu nutzen, bedarf es einer automatischen Auswertung. Die bisher entwickelten Pickeralgorithmen erreichen allerdings nicht die Genauigkeit des manuellen Pickens durch einen erfahrenen Seismologen, weil Entstehung und Ausbreitung von Erdbeben äußerst komplexe Vorgänge sind und verschiedene physikalische Prozesse das seismische Wellenfeld beeinflussen.
Künstliche Intelligenz aber kann die Daten ebenso genau auswerten wie der Mensch. Dies haben Wissenschaftler am GPI, an der University of Liverpool und an der University of Granada nun gezeigt. Wie die Forscher in der
...Der komplette Artikel ist nur für Abonnenten des ADMIN Archiv-Abos verfügbar.